3.339 \(\int x \sqrt {-c+d x} \sqrt {c+d x} (a+b x^2) \, dx\)

Optimal. Leaf size=67 \[ \frac {(d x-c)^{3/2} (c+d x)^{3/2} \left (a d^2+b c^2\right )}{3 d^4}+\frac {b (d x-c)^{5/2} (c+d x)^{5/2}}{5 d^4} \]

[Out]

1/3*(a*d^2+b*c^2)*(d*x-c)^(3/2)*(d*x+c)^(3/2)/d^4+1/5*b*(d*x-c)^(5/2)*(d*x+c)^(5/2)/d^4

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 72, normalized size of antiderivative = 1.07, number of steps used = 2, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {460, 74} \[ \frac {(d x-c)^{3/2} (c+d x)^{3/2} \left (5 a d^2+2 b c^2\right )}{15 d^4}+\frac {b x^2 (d x-c)^{3/2} (c+d x)^{3/2}}{5 d^2} \]

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[-c + d*x]*Sqrt[c + d*x]*(a + b*x^2),x]

[Out]

((2*b*c^2 + 5*a*d^2)*(-c + d*x)^(3/2)*(c + d*x)^(3/2))/(15*d^4) + (b*x^2*(-c + d*x)^(3/2)*(c + d*x)^(3/2))/(5*
d^2)

Rule 74

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] &
& EqQ[a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]

Rule 460

Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)
*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m + 1)*(a1 + b1*x^(n/2))^(p + 1)*(a2 + b2*x^(n/2))^(p + 1))/(b1*b2*e*
(m + n*(p + 1) + 1)), x] - Dist[(a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1))/(b1*b2*(m + n*(p + 1) + 1)), I
nt[(e*x)^m*(a1 + b1*x^(n/2))^p*(a2 + b2*x^(n/2))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, e, m, n, p}, x] &&
EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && NeQ[m + n*(p + 1) + 1, 0]

Rubi steps

\begin {align*} \int x \sqrt {-c+d x} \sqrt {c+d x} \left (a+b x^2\right ) \, dx &=\frac {b x^2 (-c+d x)^{3/2} (c+d x)^{3/2}}{5 d^2}-\frac {1}{5} \left (-5 a-\frac {2 b c^2}{d^2}\right ) \int x \sqrt {-c+d x} \sqrt {c+d x} \, dx\\ &=\frac {\left (2 b c^2+5 a d^2\right ) (-c+d x)^{3/2} (c+d x)^{3/2}}{15 d^4}+\frac {b x^2 (-c+d x)^{3/2} (c+d x)^{3/2}}{5 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 62, normalized size = 0.93 \[ \frac {\sqrt {d x-c} \sqrt {c+d x} \left (d^2 x^2-c^2\right ) \left (5 a d^2+2 b c^2+3 b d^2 x^2\right )}{15 d^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[-c + d*x]*Sqrt[c + d*x]*(a + b*x^2),x]

[Out]

(Sqrt[-c + d*x]*Sqrt[c + d*x]*(-c^2 + d^2*x^2)*(2*b*c^2 + 5*a*d^2 + 3*b*d^2*x^2))/(15*d^4)

________________________________________________________________________________________

fricas [A]  time = 1.14, size = 66, normalized size = 0.99 \[ \frac {{\left (3 \, b d^{4} x^{4} - 2 \, b c^{4} - 5 \, a c^{2} d^{2} - {\left (b c^{2} d^{2} - 5 \, a d^{4}\right )} x^{2}\right )} \sqrt {d x + c} \sqrt {d x - c}}{15 \, d^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)*(d*x-c)^(1/2)*(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/15*(3*b*d^4*x^4 - 2*b*c^4 - 5*a*c^2*d^2 - (b*c^2*d^2 - 5*a*d^4)*x^2)*sqrt(d*x + c)*sqrt(d*x - c)/d^4

________________________________________________________________________________________

giac [B]  time = 0.37, size = 361, normalized size = 5.39 \[ \frac {5 \, {\left ({\left ({\left (d x + c\right )} {\left (2 \, {\left (d x + c\right )} {\left (\frac {3 \, {\left (d x + c\right )}}{d^{3}} - \frac {13 \, c}{d^{3}}\right )} + \frac {43 \, c^{2}}{d^{3}}\right )} - \frac {39 \, c^{3}}{d^{3}}\right )} \sqrt {d x + c} \sqrt {d x - c} - \frac {18 \, c^{4} \log \left ({\left | -\sqrt {d x + c} + \sqrt {d x - c} \right |}\right )}{d^{3}}\right )} b c + 20 \, {\left (\sqrt {d x + c} \sqrt {d x - c} {\left ({\left (d x + c\right )} {\left (\frac {2 \, {\left (d x + c\right )}}{d^{2}} - \frac {7 \, c}{d^{2}}\right )} + \frac {9 \, c^{2}}{d^{2}}\right )} + \frac {6 \, c^{3} \log \left ({\left | -\sqrt {d x + c} + \sqrt {d x - c} \right |}\right )}{d^{2}}\right )} a d + {\left ({\left ({\left (2 \, {\left (d x + c\right )} {\left (3 \, {\left (d x + c\right )} {\left (\frac {4 \, {\left (d x + c\right )}}{d^{4}} - \frac {21 \, c}{d^{4}}\right )} + \frac {133 \, c^{2}}{d^{4}}\right )} - \frac {295 \, c^{3}}{d^{4}}\right )} {\left (d x + c\right )} + \frac {195 \, c^{4}}{d^{4}}\right )} \sqrt {d x + c} \sqrt {d x - c} + \frac {90 \, c^{5} \log \left ({\left | -\sqrt {d x + c} + \sqrt {d x - c} \right |}\right )}{d^{4}}\right )} b d - \frac {60 \, {\left (2 \, c^{2} \log \left ({\left | -\sqrt {d x + c} + \sqrt {d x - c} \right |}\right ) - \sqrt {d x + c} \sqrt {d x - c} {\left (d x - 2 \, c\right )}\right )} a c}{d}}{120 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)*(d*x-c)^(1/2)*(d*x+c)^(1/2),x, algorithm="giac")

[Out]

1/120*(5*(((d*x + c)*(2*(d*x + c)*(3*(d*x + c)/d^3 - 13*c/d^3) + 43*c^2/d^3) - 39*c^3/d^3)*sqrt(d*x + c)*sqrt(
d*x - c) - 18*c^4*log(abs(-sqrt(d*x + c) + sqrt(d*x - c)))/d^3)*b*c + 20*(sqrt(d*x + c)*sqrt(d*x - c)*((d*x +
c)*(2*(d*x + c)/d^2 - 7*c/d^2) + 9*c^2/d^2) + 6*c^3*log(abs(-sqrt(d*x + c) + sqrt(d*x - c)))/d^2)*a*d + (((2*(
d*x + c)*(3*(d*x + c)*(4*(d*x + c)/d^4 - 21*c/d^4) + 133*c^2/d^4) - 295*c^3/d^4)*(d*x + c) + 195*c^4/d^4)*sqrt
(d*x + c)*sqrt(d*x - c) + 90*c^5*log(abs(-sqrt(d*x + c) + sqrt(d*x - c)))/d^4)*b*d - 60*(2*c^2*log(abs(-sqrt(d
*x + c) + sqrt(d*x - c))) - sqrt(d*x + c)*sqrt(d*x - c)*(d*x - 2*c))*a*c/d)/d

________________________________________________________________________________________

maple [A]  time = 0.05, size = 44, normalized size = 0.66 \[ \frac {\left (d x +c \right )^{\frac {3}{2}} \left (3 b \,d^{2} x^{2}+5 a \,d^{2}+2 b \,c^{2}\right ) \left (d x -c \right )^{\frac {3}{2}}}{15 d^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b*x^2+a)*(d*x-c)^(1/2)*(d*x+c)^(1/2),x)

[Out]

1/15*(d*x+c)^(3/2)*(3*b*d^2*x^2+5*a*d^2+2*b*c^2)*(d*x-c)^(3/2)/d^4

________________________________________________________________________________________

maxima [A]  time = 0.62, size = 70, normalized size = 1.04 \[ \frac {{\left (d^{2} x^{2} - c^{2}\right )}^{\frac {3}{2}} b x^{2}}{5 \, d^{2}} + \frac {2 \, {\left (d^{2} x^{2} - c^{2}\right )}^{\frac {3}{2}} b c^{2}}{15 \, d^{4}} + \frac {{\left (d^{2} x^{2} - c^{2}\right )}^{\frac {3}{2}} a}{3 \, d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x^2+a)*(d*x-c)^(1/2)*(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/5*(d^2*x^2 - c^2)^(3/2)*b*x^2/d^2 + 2/15*(d^2*x^2 - c^2)^(3/2)*b*c^2/d^4 + 1/3*(d^2*x^2 - c^2)^(3/2)*a/d^2

________________________________________________________________________________________

mupad [B]  time = 1.64, size = 83, normalized size = 1.24 \[ \sqrt {d\,x-c}\,\left (\frac {b\,x^4\,\sqrt {c+d\,x}}{5}-\frac {\left (2\,b\,c^4+5\,a\,c^2\,d^2\right )\,\sqrt {c+d\,x}}{15\,d^4}+\frac {x^2\,\left (5\,a\,d^4-b\,c^2\,d^2\right )\,\sqrt {c+d\,x}}{15\,d^4}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*x^2)*(c + d*x)^(1/2)*(d*x - c)^(1/2),x)

[Out]

(d*x - c)^(1/2)*((b*x^4*(c + d*x)^(1/2))/5 - ((2*b*c^4 + 5*a*c^2*d^2)*(c + d*x)^(1/2))/(15*d^4) + (x^2*(5*a*d^
4 - b*c^2*d^2)*(c + d*x)^(1/2))/(15*d^4))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \left (a + b x^{2}\right ) \sqrt {- c + d x} \sqrt {c + d x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(b*x**2+a)*(d*x-c)**(1/2)*(d*x+c)**(1/2),x)

[Out]

Integral(x*(a + b*x**2)*sqrt(-c + d*x)*sqrt(c + d*x), x)

________________________________________________________________________________________